2,606 research outputs found

    Wind and the villages in Rincón de Ademuz, Spain

    Full text link
    [EN] This study focuses on a sustainable system which makes it possible for the villages in the region of Rincón de Ademuz to have stood within their natural environment for over two thousand years. For this analysis the study has focused specifically on the wind factor. The dry weather and the wind trajectory make it possible to create a comfortable living environment in the villages. This research analyzed the position of a building unit in order to offer a clear representation of the relationship between wind and these villages.Ji, W.; Mileto, C.; Vegas López-Manzanares, F. (2022). Wind and the villages in Rincón de Ademuz, Spain. En Proceedings HERITAGE 2022 - International Conference on Vernacular Heritage: Culture, People and Sustainability. Editorial Universitat Politècnica de València. 111-117. https://doi.org/10.4995/HERITAGE2022.2022.1570211111

    Power spectrum for the Bose-Einstein condensate dark matter

    Full text link
    We assume that dark matter is composed of scalar particles that form a Bose-Einstein condensate (BEC) at some point during the cosmic evolution. Afterwards, cold dark matter is in the form of a condensate and behaves slightly different from the standard dark matter component. We study the large scale perturbative dynamics of the BEC dark matter in a model where this component coexists with baryonic matter and cosmological constant. The perturbative dynamics is studied using neo- Newtonian cosmology (where the pressure is dynamically relevant for the homogeneous and isotropic background) which is assumed to be correct for small values of the sound speed. We show that BEC dark matter effects can be seen in the matter power spectrum if the mass of the condensate particle lies in the range 15meV < m < 700meV leading to a small, but perceptible, excess of power at large scales.Comment: 7 pages, 4 figures, Accepted for publication in Physics Letters

    Newtonian Collapse of Scalar Field Dark Matter

    Full text link
    In this letter, we develop a Newtonian approach to the collapse of galaxy fluctuations of scalar field dark matter under initial conditions inferred from simple assumptions. The full relativistic system, the so called Einstein-Klein-Gordon, is reduced to the Schr\"odinger-Newton one in the weak field limit. The scaling symmetries of the SN equations are exploited to track the non-linear collapse of single scalar matter fluctuations. The results can be applied to both real and complex scalar fields.Comment: 4 pages RevTex4 file, 4 eps figure

    Evolution of the Schr\"odinger--Newton system for a self--gravitating scalar field

    Full text link
    Using numerical techniques, we study the collapse of a scalar field configuration in the Newtonian limit of the spherically symmetric Einstein--Klein--Gordon (EKG) system, which results in the so called Schr\"odinger--Newton (SN) set of equations. We present the numerical code developed to evolve the SN system and topics related, like equilibrium configurations and boundary conditions. Also, we analyze the evolution of different initial configurations and the physical quantities associated to them. In particular, we readdress the issue of the gravitational cooling mechanism for Newtonian systems and find that all systems settle down onto a 0--node equilibrium configuration.Comment: RevTex file, 19 pages, 26 eps figures. Minor changes, matches version to appear in PR

    Aharonov-Bohm interferometry with quantum dots: scattering approach versus tunneling picture

    Full text link
    We address the question of how to model electron transport through closed Aharonov-Bohm interferometers which contain quantum dots. By explicitly studying interferometers with one and two quantum dots, we establish the connection between a tunneling-Hamiltonian formulation on the one hand and a scattering-matrix approach on the other hand. We prove that, under certain circumstances, both approaches are equivalent, i.e., both types of models can describe the same experimental setups. Furthermore, we analyze how the interplay of the Aharonov-Bohm phase and the orbital phase associated with the lengths of the interferometers' arms affect transport properties.Comment: 8 pages, 8 figures, published versio

    Chemical Bonding of Transition-metal Co13_{13} Clusters with Graphene

    Full text link
    We carried out density functional calculation to study Co13_{13} clusters on graphene. We deposit several free isomers in different disposition respect to hexagonal lattice nodes, studying even the hcphcp 2d2d isomer recently obtained as the most stable one. Surprisingly, Co13_{13} clusters bonded to graphene prefer icosahedronlikeicosahedron-like structures where the low lying isomer is much distorted, because it is linked with more bonds than in previous works. For any isomer the most stable position binds to graphene by the Co atoms that can lose electrons. We find that the charge transfers between graphene and clusters are small enough to conclude that the Co-graphene binding is not ionic-like but chemical. Besides, the same order of stability among the different isomers on doped graphene is well kept. These findings could also be of interest for magnetic clusters on graphenic nanostructures such as ribbons and nanotubes.Comment: 12 pages, 6 figure

    ϕ2\phi^2 as Dark Matter

    Full text link
    In this paper we consider ϕ2\phi^2 scalar field potential as a candidate to dark matter. If it is an ultralight boson particle, it condensates like a Bose-Einstein system at very early times and forms the basic structure of the Universe. Real scalar fields collapse in equilibrium configurations that oscillate in space-time (oscillatons).The cosmological behavior of the field equations are solved using the dynamical system formalism. We use the current cosmological parameters as constraints for the present value of the scalar field. We reproduce the cosmological predictions of the standard Λ\LambdaCDM model with this model. Therefore, scalar field dark matter seems to be a good alternative to cold dark matter nature.Comment: Accepted for publication in MNRAS 11 pages, 7 figure

    Are galaxies extending?

    Get PDF
    It is suggested that the recently observed size evolution of very massive compact galaxies in the early universe can be explained, if dark matter is in Bose Einstein condensate. In this model the size of the dark matter halos and galaxies depends on the correlation length of dark matter and, hence, on the the expansion of the universe. This theory predicts that the size of the galaxies increases as the Hubble radius of the universe even without merging, which agrees well with the recent observational data.Comment: 5 pages, 2figs, revtex,accepted version for PL
    corecore